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Simulation: GenAug shows notable improvement on unseen test environment baselines

Real World: Language-guided policy trained with and w/o GenAug on 10 pick and place tasks 
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GenAug is based on text-to-image 
diffusion models, it canot gaurantee 
the generated images are perfect.

Typical Failure cases occur when the background color is 
similar to the pick or place object. Or one  of a few 
distractors has a very bright color or similar colors.

1. Assume the Same Action: 
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2. Augmentation & Speed:

Add DistractorsChange Texture Swap Object Change Background

GenAug does not augment action labels and reason about physics parameters. It assumes the same action still works on
the augmented scenes. 

GenAug cannot guarantee visual consistency for frame augmentation in a video. GenAug usually takes about 30 seconds 
to complete all the augmentations for one scene, which might not be practical for some approaches such as on-policy RL.

In addition,we test GenAug on a new task ”close the top drawer” with a fetch robot. In particular, We tested on 100 
unseen backgrounds using iGibson rooms and observed GenAug is able to achieve 60% success rate while policy 
without Genaug is only 1%.

"Pick up the coffee mug" "Coffee Mug"

Large Generative Model

Imagined/Augmented scenes

Can robots get huge, free and diverse data 
via large generative models?
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GenAug: Retargeting behaviors to unseen situations 
via Generative Augmentation
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